The Interaction Between Task Switching and Priming

By Lisa Crocco and Keisuke Fukuda
University of Toronto Mississauga

Introduction

Can we reduce task switching costs through priming?

Switch Task: “Report the larger shape for ‘G’ and the smaller shape for ‘L’.”

Methods

<table>
<thead>
<tr>
<th>Switch task</th>
<th>Target Priming</th>
<th>Distractor Priming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priming:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>L</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Target</td>
<td>Target</td>
<td>Target</td>
</tr>
<tr>
<td>Distractor</td>
<td>Distractor</td>
<td>Distractor</td>
</tr>
<tr>
<td>priming (Td)</td>
<td>priming (Td)</td>
<td>priming (Td)</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Repeat</td>
<td>Repeat</td>
<td>Repeat</td>
</tr>
<tr>
<td>Task Type</td>
<td>Task Type</td>
<td>Task Type</td>
</tr>
<tr>
<td>Switch</td>
<td>Switch</td>
<td>Switch</td>
</tr>
<tr>
<td>No Priming</td>
<td>No Priming</td>
<td>No Priming</td>
</tr>
</tbody>
</table>

Can priming reduce switch costs?

Using the keyboard, complete the switch task

1. Square
2. Triangle
3. Circle

Can we reproduce the switch costs?

N=36

- Task Switching (Acc)
- Task Switching (ms)

Yes, task switching is costly

Did priming reduce switch costs?

Target priming increased switch costs

Distractor priming reduced switch costs

What’s the source of this priming effect?

Drag the mouse to the solid shaped side for ‘L’ and the dotted shaped side for ‘G’

“To get to the next trial, drag the mouse to the center of the screen.”

Do we see the same switch costs?

Can we reproduce the priming effects?

Discussion

In the context of task switch,
1) **Target priming increases** the switch cost1,2 while distractor priming **reduces** switch cost3,4.
2) These effects take place **upstream** of motor planning/execution2.

References: